Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids
نویسندگان
چکیده
This paper introduces a method to extract ‘Shape-DNA’, a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by taking the eigenvalues (i.e. the spectrum) of its Laplace–Beltrami operator. Employing the Laplace–Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object’s representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization) of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the isometry invariance of the Laplace–Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids. A patent application based on ideas presented in this paper is pending. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory po...
متن کاملShape-based Transfer Function Using Laplace-Beltrami Operator
We exploit the Laplace-Beltrami operator to represent shapes which in turn is used for designing a shape based transfer function for volume rendering. Laplace-Beltrami spectral measures are isometry invariant and are one of the most powerful ways to represent shape, also called “Shape-DNA”. Isosurfaces are extracted from the volume data and the Laplace-Beltrami operator is applied on these extr...
متن کاملHeat Kernel Laplace-Beltrami Operator on Digital Surfaces
Many problems in image analysis, digital processing and shape optimization can be expressed as variational problems involving the discretization of the Laplace-Beltrami operator. Such discretizations have have been widely studied for meshes or polyhedral surfaces. On digital surfaces, direct applications of classical operators are usually not satisfactory (lack of multigrid convergence, lack of...
متن کاملLaplace-Beltrami eigenfunctions for deformation invariant shape representation
A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and eigenfunctions of the Laplace-Beltrami differential operator. Notably, since the definition of the GPS embedding completely avoids the use of geodesic distances, and is based on objects of global character, the obtained representation is robust to local topology changes. The GPS embedd...
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer-Aided Design
دوره 38 شماره
صفحات -
تاریخ انتشار 2006